Ta có: ∠ (ADC) = ∠ (BCD) (gt)
⇒ ∠ (ODC) = ∠ (OCD)
⇒ ∆ OCD cân tại O
⇒ OC = OD
OB + BC = OA + AD
Mà AD = BC (tính chất hình thang cân)
⇒ OA = OB
Xét ∆ ADC và ∆ BCD:
AD = BC (tính chất hình thang cân )
AC = BD (tính chất hình thang cân)
CD chung
Do đó ∆ ADC và ∆ BCD (c.c.c)
⇒ ∠ D 1 = ∠ C 1
⇒ ∆ EDC cân tại E
⇒ EC = ED nên E thuộc đường trung trực CD
OC = OD nên O thuộc đường trung trực CD
E ≠ O. Vậy OE là đường trung trực của CD.
Ta có: BD= AC (tính chất hình thang cân)
⇒ EB + ED = EA + EC mà ED = EC
⇒ EB = EA nên E thuộc đường trung trực AB
OA = OB (chứng minh trên ) nên O thuộc đường trung trực của AB
E ≠ O. Vậy OE là đường trung trực của AB.