Cho đồ thị ( C ) : y = ax 3 + bx 2 + cx + d và Parabol ( P ) : y = mx 2 + nx + p có đồ thị như hình vẽ (đồ thị (C) là đường cong đậm hơn). Biết phần hình phẳng được giới hạn bởi (C) và (P) (phần tô đậm) có diện tích bằng 1. Thể tích của khối tròn xoay tạo thành khi quay phần hình phẳng đó quanh trục hoành bằng
A.
B.
C.
D.
Cho hàm số bậc ba y=f(x) có đồ thị (C) như hình vẽ. Biết đồ thị hàm số đã cho cắt trục Ox tại 3 điểm có hoành độ x 1 , x 2 , x 3 theo thứ tự lập thành cấp số cộng và x 3 - x 1 = 2 3 . Gọi diện tích hình phẳng giới hạn bởi (C) và trục Ox là S. Diện tích S 1 của hình phẳng giới hạn bởi các đường y = f x + 1 , y = - f x - 1 , x = x 1 và x = x 3 bằng
A. .
B. .
C. .
D. .
Trên mặt phẳng tọa độ Oxy, cho phần hình phẳng được tô đậm như hình bên được giới hạn bởi một đồ thị hàm số bậc ba đa thức và một đường thẳng. Diện tích S của phần tô đậm đó bằng bao nhiêu?
A. S = 8
B. S = 6
C. S = 2
D. S = 4
Cho (H) là hình phẳng giới hạn bởi parabol y 2 = 2 x , cung tròn có phương trình y = 8 - x 2 và trục hoành (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
Cho (H) là hình phẳng giới hạn bởi Parabol y = 3 x 2 cung tròn có phương trình y = 4 - x 2 và trục hoành (phần tô đậm trong hình vẽ). Diện tích của (H) bằng:
Cho (H) là hình phẳng giới hạn bởi parabol y = 3 x 2 cung tròn có phương trình y = 4 - x 2 (với 0 ≤ x ≤ 2 ) và trục hoành (phần tô đậm trong hình vẽ). Diện tích của (H) bằng
Cho (H) là hình phẳng giới hạn bởi parabol y = 1 4 x 2 + 1 với ( 0 ≤ x ≤ 2 2 ) nửa đường tròn y = 8 - x 2 và trục hoành, trục tung (phần tô đậm trong hình vẽ). Diện tích của (H) bằng:
Gọi H là hình phẳng giới hạn bởi đồ thị hàm số y = x , cung tròn có phương trình y = 6 - x 2 ( - 6 ≤ x ≤ 6 ) và trục hoành (phần tô đậm trong hình vẽ bên). Tính thể tích V của vật thể tròn xoay sinh bởi khi quay hình phẳng H quanh trục
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y = 2 x - 1 2 , trục hoành và các đường thẳng x = 2 và x = 8.
A. 12 7
B. 9
C. 12
D. 10