Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Hình chóp S.ABC là hình chóp tam giác đều, có cạnh đáy bằng a và cạnh bên bằng a 2 . Một mặt cầu đi qua đỉnh A và tiếp xúc với hai cạnh SB , SC tại trung điểm của mỗi cạnh. Chứng minh rằng mặt cầu đó đi qua trung điểm của AB và AC.

Cao Minh Tâm
9 tháng 11 2018 lúc 9:50

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giả sử mặt cầu đi qua đỉnh A của hình chóp và tiếp xúc với cạnh SB tại B1, tiếp xúc với cạnh SC tại C 1 . Khi đó mặt cầu cắt cạnh AB, AC lần lượt tại các điểm C 2 ,   B 2 . Mặt phẳng (SAB) cắt mặt cầu đó theo giao tuyến là một đường tròn. Đường tròn này tiếp xúc với SB tại B1 và đi qua A và  C 2

Do đó, ta có: BB 1 2 = BA . BC 2

trong đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Điều đó chứng tỏ mặt cầu nói trên đi qua trung điểm  C 2  của đoạn AB. Lí luận tương tự ta chứng minh được mặt cầu đó đi qua trung điểm  B 2  của AC.


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
ko tên
Xem chi tiết
ko tên
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết