hình bình hành ABCD có góc A = 120 độ, AB =a, BC=b, các đường phân giác của 4 góc cắt nhau tạo thành tứ giác MNPQ. tính diện tích MNPQ
hình bình hành ABCD có góc A = 120 độ, AB =a, BC=b, các đường phân giác của 4 góc cắt nhau tạo thành tứ giác MNPQ. tính diện tích MNPQ
hình bình hành ABCD có góc A = 120 độ, AB =a, BC=b, các đường phân giác của 4 góc cắt nhau tạo thành tứ giác MNPQ. tính diện tích MNPQ
Giải giúp tớ với, cần câu trả lời gấp ạk, thanks
1 / Cho tam giác ABC, góc A=90 độ, AC=3AB. D, E thuộc AC sao cho AD=DE=EC.
a/ Gọi M là điểm đối xứng với B qua D. Chứng minh rằng ABCM là tứ giác nội tiếp
b/ Chứng minh rằng góc ACB+ góc AEB= 45 độ
2/ Cho đường tròn tâm O bán kính R=3cm và một điểm S cố định bên ngoài đường tròn sao cho SO=5cm. Vẽ tiếp tuyến SA với A là tiếp điểm và cát tuyến SCB không qua tâm sao cho O nằm trong góc ASB ( C nằm giữa S và B ). Gọi H là trung điểm của CB
a) Chứng minh rằng tứ giác SAOH nội tiếp một đường tròn
b) Tính chu vi và diện tích của đường tròn ngoại tiếp tứ giác SAOH
c) Tính tích SC.SB
3/ Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC. Tia OH cắt đường tròn tại D, AD lần lượt cắt tiếp tuyến Bx của đường tròn tại E và F
a) Chứng minh AD là tia phân giác của góc CAB
b) Chứng minh tứ giác ECDF là tứ giác nội tiếp
c) Cho CD= R=căn10cm. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
4/ Cho tam giác ABC cân ở A nội tiếp đường tròn O đường kính I. Gọi E là trung điểm của AB. K là trung điểm của OI. Chứng minh rằng AEKC là tứ giác nội tiếp
5/Cho tam giác ABC. Các đường phân giác trong của B, C cắt nhau tại S, các đường phân giác ngoài của B và C cắt nhau tại E. Chứng minh rằng BSCE là 1 tứ giác nội tiếp.
cho tam giác ABC có góc A = 90 độ , đường cao AH , gọi D và E lần luotj là hình chiếu của H trên AB và AC. Biết BH=4cm, HC=9cm.
a, tính độ dài DE
b, cm : AD.DB=AE.AC
c, các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M , n
cm : M là trung điểm của BH , N là trung điểm của CH
d, tính diện tích tứ giác DEMN
( vẽ giúp hình là chính ạ camon)
cho tam giác ABC có đường cao AD, BE , CF
a. chứng minh AD, BE, CF cũng là phân giác của tam giác DEF
b. cho biết  = 72 độ, ^B= 63 độ. tính các góc của tam giác DEF
c. cho BC=12cm gọi I là trung điểm của BC; cho ^BCF = 25 độ và gọi cung của đường tròn (I;6cm) bị chắn bởi góc này là ^BmF'. tính diện tích hình quạt IBmF'
cho đường tròn (O;R) có đường kính AB. M là một điểm bất kì trên đường tròn đó ( M khác A và khác B). Tiếp tuyến tại M cắt hai tiếp tuyến tại A và B của đường tròn đã cho lần lượt tại C và D.
a) chứng minh rằng :
i) các tứ giác AOMC và BOMD nội tiếp
ii) OC vuông góc với OD và góc AOC = góc AMC = góc OBM = góc ODM.
b) trong trường hợp biết góc BAM = 60 độ. chứng minh rằng tam giác BDM đều và tính diện tích của hình quạt tròn chắn cung nhỏ MB của đường tròn đã cho theo R
Cho đoạn thẳng AB. vẽ các đường tròn (A;AB) và (B;BA) cắt nhau tại C;D. Qua D kẻ đường thẳng bất kỳ cắt (A) tại M và cắt (B) tại N. Tiếp tuyến của (A) tại M và tiếp tuyến của (B) tại N cắt nhau tại E
a) tứ giác ACBD là hình gì?tính số đo các góc của tứ giác đó.
b) chứng minh: tam giác CMN đều
c) tính góc MEN
1.trên (O) lấy các điểm lần lượt là A, B, C, D sao cho sđ cung AB =120 độ: sđ cung BC = 40 độ: sđ cung CD = 100 độ
a) tính các góc của tứ giác ABCD
b) gọi giao của AC và BD là M , AB và DC là N tính góc AMD ; góc AND
2. cho tam giác ABC nội tiếp (O). các tia phân giác góc B, góc C cắt (O) tại E; F. dây EF cắt AB, AC tại M và N
a) chứng minh AM=AN
b) gọi giao của BE và CF là I. chứng minh IE=EC