Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
thuyphi nguyen

\(\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)

Tran Le Khanh Linh
10 tháng 5 2020 lúc 17:10

\(y\ne0\)ta có: \(\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x^2+1}{y}+x+y=4\\\left(x+y\right)^2-2\frac{x^2+1}{y}=7\end{cases}}}\)

Đặt \(u=\frac{x^2+1}{y};v=x+y\)ta có hệ \(\hept{\begin{cases}u+v=4\\v^2+2v-15=0\end{cases}\Leftrightarrow\hept{\begin{cases}u=4-v\\v^2+2v-15=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}v=3;u=1\\v=-5;u=9\end{cases}}}\)

Với v=3; u=1 ta có hệ \(\hept{\begin{cases}x^2+1=y\\x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+1=y\\y=3-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+x-2=0\\y=3-x\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1;y=2\\x=-2;y=5\end{cases}}}\)

Với v=-5;u=9 ta có hệ \(\hept{\begin{cases}x^2+1=9y\\x+y=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+1=9y\\y=-5-x\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+9x+46=0\\y=-5-x\end{cases}}}\)(hệ này vô nghiệm)

Vậy hệ đã cho có nghiệm (x;y)={(1;2);(-2;5)}

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thị Hòa
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Lê Đức Anh
Xem chi tiết
Nguyễn Thị Hòa
Xem chi tiết
Nguyen Phuc Duy
Xem chi tiết
Nguyễn Tiến Đạt
Xem chi tiết
Linh_Chi_chimte
Xem chi tiết
Thiên An
Xem chi tiết
Aeris
Xem chi tiết