Ta có: \(-7x^3+12x^2y-6xy^2+y^3-2x+2y=0\)
\(\Leftrightarrow\left(x^2y-x^3\right)-\left(xy^2-x^2y\right)+\left(2x^2y-2x^3\right)+\left(y^3-xy^2\right)-\left(4xy^2-4x^2y\right)+\left(4x^2y-4x^3\right)+\left(2y-2x\right)=0\)\(\Leftrightarrow\left(y-x\right)\left(x^2-xy+2x^2+y^2-4xy+4x^2+2\right)=0\)
\(\Leftrightarrow\left(y-x\right)\left[x^2-x\left(y-2x\right)+\left(y-2x\right)^2+2\right]=0\)
\(\Leftrightarrow\left(y-x\right)\left[\left(x-\frac{y-2x}{2}\right)^2+\frac{3}{4}\left(y-2x\right)^2+2\right]=0\)
Mà \(\left(x-\frac{y-2x}{2}\right)^2+\frac{3}{4}\left(y-2x\right)^2+2>0\left(\forall x,y\right)\)
\(\Rightarrow y-x=0\Leftrightarrow x=y\)
Khi đó \(HPT\Leftrightarrow\hept{\begin{cases}2x^2-y^2-7x+2y+6=0\\x=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x^2-x^2-7x+2x+6=0\\x=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-5x+6=0\\x=y\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x-2\right)\left(x-3\right)=0\\x=y\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\in\left\{2;3\right\}\\x=y\end{cases}}\)
Vậy ta có 2 cặp (x;y) thỏa mãn: \(\left(2;2\right);\left(3;3\right)\)