Vì (x-5)22\(\ge\)0
\(\left(y+7\right)^{12}\ge0\)
Mà \(\left(x-5\right)^{22}+\left(y+7\right)^{12}=0\)
Nên \(\hept{\begin{cases}\left(x-5\right)^{22}=0\\\left(y+7\right)^{12}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-5=0\\y+7=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=-7\end{cases}}\)
Vì (x - 5)22 ≥ 0 ; (y + 7)12 ≥ 0
=> (x - 5)22 + (y + 7)12 ≥ 0
Dấu "=" xảy ra khi (x - 5)22 = 0 ; (y + 7)12 = 0
=> x = 5 ; y = - 7
Vậy x = 5 ; y = - 7