Trong cuộc hội thảo có 100 người tham gia. Gải sử mỗi người đều quen biết với ít nhất 67 người. Chứng minh rằng có thể tìm được một nhóm 4 người mà bất kì 2 người nào trong nhóm đó đều quen biết nhau.
Dùng phương pháp phản chưng để giải các bài tập sau:
1) Một nhóm học sinh gồm 35 người chơi trong công viên trong đó có những người quen nhau và những người không quen nhau. CMR có ít nhất 1 người có số người quen trong nhóm là số chẵn.
2) Có 9 viên bi có màu xanh hoặc đỏ xếp cách đều nhau thành 1 hàng ngang. CMR: tồn tại 1 viên bi cách đều 2 viên bi cùng màu với nó.
3) Trên 1 vòng tròn, người ta xếp 10 bi đỏ và 1 số bi xanh. Biết rằng đối diện với 1 bi đỏ qua tâm vòng tròn là 1 bi xanh. CMR: tồn tại 2 bi xanh đặt cạnh nhau.
Trong một phòng học có n người, chứng minh rằng bao giờ cũng tìm được 2 người có số người quen trong số những người họp là như nhau
Cho X là một tập hợp gồm 700 số tự nhiên đôi một khác nhau, mỗi số không quá 2007. Chứng minh rằng trong tập X luôn tìm được hai phần tử x, y sao cho x-y thuộc tập hợp E=(3;6;9)
1. Cho tam giác ABC có đọ dài các đường hân giác trog nhỏ hơn 1.
Chứng minh rằng diện tích tam giác đó nhỏ hơn \(\frac{\sqrt{3}}{3}\)
2. Trên mặt phẳng cho 2012 điểm , khoảng cách giữa chúng đôi một khác nhau. Nối mỗi điểm trong 2012 điểm này với điểm gần nhất.
CMR với cách nối này ta không thể nhận được một đường gấp khúc khép kín
3. Trên mặt phẳng cho 2012 điểm không thẳng hàng.
CMR tồn tại một đường tròn đi qua 3 trong 2012 điểm đã cho mà đường tròn này không chứa bất kì điểm nào trong số những điểm còn lại
4. Trên mặt phẳng cho n điểm sao cho khoảng cách giữa 2 điểm bất kì đôi một khác nhau. Người ta nối mỗi điểm với điểm gần nhất.
CMR qua mỗi điểm co không quá 5 đoạn thẳng
5. Cho 7 số nguyên dương khác nhau không vượt quá 1706.
CMR tồn tại 3 số a, b, c trong chúng sao cho a<b+c<4a
Bài 1: Cho \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\left(a,b,c\ne0\right)\)Chứng minh rằng a+b không phải là số nguyên tố
Bài 2: Cho biểu thức f(x)=x^4+ax^3+bx^2+cx+d. Biết rằng f(1)=2016, f(2)=4096, f(3)=6048. Tính f(5)+f(-1)
Bài 3: Tìm số dư khi \(x^6:x^2-x-1\)
Bài 4: Sau khi điểm danh xong, bạn lớp trưởng nói: "Số các bạn có mặt ở đây bé hơn tích 2 lần số đó 9 đơn vị". Biết rằng số các bạn có mặt là số có hai chữ số
Bài 5:Cho 5 số tự nhiên bất kì. Biết được rằng tổng của 3 số bất kì luôn lớn hơn tổng hai số còn lại. C/m: không có số tự nhiên nào bé hơn 5
Bài 6: Trong một giải đấu bóng đá có 12 đội tham dự, thi đấu vòng tròn một lượt(hai đội bất kì đấu với nhau đúng 1 trận). Biết rằng mỗi đội đấu 4 trận. Chứng minh rằng luôn tìm được 3 đội bóng chưa đc đấu với nhau
P/S: NHỚ CÁC BẠN TRÌNH BÀY RÕ RÀNG CHO MÌNH NHÉ, THANKS
Cho X là một tập hợp gồm 700 số tự nhiên đôi một khác nhau, mỗi số không lớn hơn 2007. Chứng minh rằng trong tập X luôn tìm được hai phần tử x, y sao cho x-y thuộc tập hợp E=(3;6;9)
Chứng minh rằng trong 39 số tự nhiên liên tiếp luôn tìm được một số mà tổng các chữ số của nó chia hết cho 11. chứng minh bằng nguyên lý Dirichlet(giúp mình với)
Chứng minh trung điểm 3 cạnh đôi một không kề nhau của một lục giác đều luôn làm thành ba định của 1 tam giác đều