Biết hệ phương trình \(\left\{{}\begin{matrix}x+3y=1+m\\2x-y=7\end{matrix}\right.\) có nghiệm duy nhất (x0;y0) thỏa mãn x0+2y0.Khẳng định nào dưới đây là đúng?
A.-2≤m<0 B.0≤m<2 C.2≤m<4 D.4≤m<6
Cho hệ phương trình 2 x + m y = 1 m x + 2 y = 1 . Gọi M ( x 0 ; y 0 ) trong đó ( x 0 ; y 0 ) là nghiệm duy nhất của hệ. Phương trình đường thẳng cố định mà M chạy trên đường thẳng đó là:
A. (d): y = 2x – 1
B. (d): y = x – 1
C. (d): x = y
D. (d): y = x + 1
Cho hệ phương trình: 2x+y=2
x+2y=4m+5
a, Giải hệ với m=-1
b, Tìm m để hệ có nghiệm (x0;y0) thỏa mãn x0=y0-2
Cho hệ phương trình x − y = 5 3 x + 2 y = 18 có nghiệm ( x 0 ; y 0 ) . Tích x 0 . y 0 là?
A. 5
B. 84 25
C. 25 84
D. 84 5
Cho hệ phương trình : mx + y =5
2x - y = -2
Xác định giá trị của m để nghiệm (x0;y0) của hệ pt trên thỏa điều kiện : x0 + y0 = 1
\(\hept{\begin{cases}2x-my=-3\\mx+3y=4\end{cases}}\)Cho hệ phương trình : 1 . Chứng minh rằng hệ phương trình luôn có nghiệm duy nhất khi m thay đổi
2 . Tìm giá trị nguyên lớn nhất của m để hệ có nghiệm ( x0;y0) thỏa mãn
Bằng cách tìm giao điểm của hai đường thẳng d: 4x + 2y = −5 và d’: 2x – y = −1 ta tìm được nghiệm của hệ phương trình 4 x + 2 y = − 5 2 x − y = − 1 là ( x 0 ; y 0 ) . Tính x 0 . y 0
A. 21 32
B. − 21 32
C. 21 8
D. − 10 12
Bằng cách tìm giao điểm của hai đường thẳng d: −2x + y = 3 và d’: x + y = 5, ta tìm được nghiệm của hệ phương trình − 2 x + y = 3 x + y = 5 là ( x 0 ; y 0 ) . Tính y 0 – x 0
A. 11 3
B. 13 3
C. 5
D. 17 3
Cho hệ phương trình m − 1 x − m y = 3 m − 1 2 x − y = m + 5 . Tìm m để có nghiệm duy nhất (x; y) sao cho biểu thức S = x 2 + y 2 đạt giá trị nhỏ nhất.
A. m = 1
B. m = 0
C m = −1
D. m = 2
giả sử (x0,y0) là nghiệm của hệ phương trình \(\left\{{}\begin{matrix}x^2+y^2=25\\x+y-xy=-5\end{matrix}\right.\)