Điều kiện: x ≠ 1; y ≠ −1
Ta có 2 x x + 1 + y y + 1 = 3 x x + 1 + 3 y y + 1 = − 1 ⇔ 2. x x + 1 + y y + 1 = 3 x x + 1 + 3. y y + 1 = − 1
Đặt x x + 1 = a ; y y + 1 = b khi đó ta có hệ phương trình
2 a + b = 3 a + 3 b = − 1 ⇔ b = 3 − 2 a a + 3 3 − 2 a = − 1 ⇔ b = 3 − 2 a a + 9 − 6 a = − 1 ⇔ b = 3 − 2 a − 5 a = − 10 ⇔ a = 2 b = 3 − 2.2 ⇔ a = 2 b = − 1
Thay trở lại cách đặt ta được
x x + 1 = 2 y y + 1 = − 1 ⇔ x = 2 x + 2 y = − y − 1 ⇔ x = − 2 y = − 1 2
(Thỏa mãn điều kiện)
Vậy hệ phương trình có nghiệm duy nhất (x; y) = − 2 ; − 1 2
Đáp án: C