1992 đồng dư với 4 (mod 7)
\(1992^3\) đồng dư với 1 (mod 7)
=> \(\left(1992^3\right)^{664}\)đồng dư với \(1^{664}\) và đồng dư với 1 (mod 7)
1994 đồng dư với 6 (mod 7)
\(1994^2\) đồng dư với 1 (mod 7)
=> \(\left(1994^2\right)^{997}\)đồng dư với \(1^{997}\) và đồng dư với 1 (mod 7)
\(1992^{1993}+1994^{1995}\)
\(=1992.\left(1992^3\right)^{664}+1994.\left(1994^2\right)^{997}\)
\(=4.1+6.1=24\)
Vậy số dư là 24
Vấn đề Nguyệt muốn hỏi là tại sao tự dưng bạn phía trên lại có thể làm ra như vậy khi số dư 24 lớn hơn số chia ~ :)