Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Viết Ngọc

Hãy nêu 7 hằng đẳng thức đáng nhớ ?

Lê Tài Bảo Châu
20 tháng 5 2019 lúc 23:13

Các hàng đẳng thức lớp 7 đc học là ;

\(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(a^2-b^2=\left(a+b\right).\left(a-b\right)\)

Vì câu hỏi ghi toán 7 nên chỉ có thế thôi chưa học đâu

Nguyễn Vũ Minh Hiếu
21 tháng 5 2019 lúc 6:12

7 hằng đẳng thức đáng nhớ là :

\(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

~ Hok tốt ~

๖ۣۜN.๖ۣۜÝ
21 tháng 5 2019 lúc 7:04

1.Bình phương của 1 tổng bằng bình phương số thứ 1 cộng hai lần tích của số thứ nhất với số thứ hai cộng bình phương số thứ hai

2.Bình phương của 1 hiệu bằng bình phương số thứ 1 trừ 2 lần tích số thứ nhất với số thứ 2 cộng với bình phương số thứ 2.

3.Hiệu 2 bình phương bằng tích của tổng 2 số với hiệu 2 số.

4.Lập phương của 1 tổng bằng lập phương số thứ 1 + 3 lần tích bình phương số thứ 1 với số thứ 2 + 3 lần tích số thứ 1 với bình phương số thứ 2 + lập phương số thứ 2.

5. Lập phương của 1 tổng bằng lập phương số thứ 1 -3 lần tích bình phương số thứ 1 với số thứ 2 + 3 lần tích số thứ 1 với bình phương số thứ 2 - lập phương số thứ 2.

6.Tổng hai lập phương bằng tích giữa tổng 2 số với bình phương thiếu của 1 hiệu.

7.Hiệu 2 lập phương bằng tích giữa hiệu hai số với bình phương thiếu của 1 tổng.

Bình phương của một tổng:

{\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

Bình phương của một hiệu:

{\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

Hiệu hai bình phương:

{\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

Lập phương của một tổng:

{\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

Lập phương của một hiệu:

{\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

Tổng hai lập phương:

{\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

Hiệu hai lập phương:

{\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

Lên wiki tìm có hết nhé

Kiệt Nguyễn
28 tháng 5 2019 lúc 6:49

\(\left(a+b\right)^2=a^2+2ab+b^2\)

\(\left(a-b\right)^2=a^2-2ab+b^2\)

\(a^2-b^2=\left(a+b\right)\left(a-b\right)\)

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)


Các câu hỏi tương tự
minh anh
Xem chi tiết
Đỗ Phương Linh
Xem chi tiết
Cô Pé Tóc Mây
Xem chi tiết
ngô đăng khôi
Xem chi tiết
Phạm Ngọc Minh
Xem chi tiết
Nguyễn Trọng Bình
Xem chi tiết
Trang Tritiny Betha
Xem chi tiết
Toàn Lê
Xem chi tiết
Phat Tan
Xem chi tiết