Hai ô tô xuất phát cùng một lúc từ hai địa điểm A và B cách nhau 10 km trên một đường thẳng qua A và B, chuyển động cùng chiều từ A đến B. Tốc độ của ô tô xuất phát từ A là 60 km/h, của ô tô xuất phát từ B là 40 km/h.
a) Lấy gốc tọa độ ở A, gốc thời gian là lúc xuất phát, hãy viết công thức tính quãng đường đi được và phương trình chuyển động của hai xe.
b) Vẽ đồ thị tọa độ - thời gian của hai xe trên cùng một hệ trục (x,t).
c) Dựa vào đồ thị tọa độ - thời gian để xác định vị trí và thời điểm mà xe A đuổi kịp xe B.
a) Công thức tính quãng đường đi được của 2 xe là :
SA = VA.t = 60t và SB = VB.t = 40t.
Phương trình chuyển động của 2 xe:
xA = 0 + 60t và xB = 10 + 40t
Với S và x tính bằng km; t tính bằng giờ.
b)
t(h) |
0 |
0,5 |
1 |
2 |
3 |
... |
xA (km) |
0 |
30 |
60 |
120 |
180 |
... |
xB (km) |
10 |
30 |
50 |
90 |
130 |
... |
c) Khi 2 xe gặp nhau thì tọa độ của chúng bằng nhau:
xA = xB
60t = 10 + 40t
⇒ 20t = 10
⇒ t = 0,5 h
⇒ xA = 60.0,5 = 30 km.
Vậy điểm gặp nhai cách gốc tọa độ A một đoạn 30 km.
Trên đồ thị điểm gặp nhai có tọa độ (t,x ) tương ứng là (0,5;30).