Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lan Lương Ngọc

Hai đội thi đấu cờ với nhau .Mỗi đối thủ của đội này phải đấu với một ván với đối thủ của đội kia. Biết rằng tổng số ván cờ đã đấu bằng 4 lần tổng số đối thủ của 2 đội và biết rằng số đối thủ của ít nhất 1 trong 2 đội là số lẻ.Hỏi mổi đội có bao nhiêu đối thủ?

 

 

Sakura kun sky fc11
15 tháng 9 2017 lúc 14:17

Toán giải bằng cách lập PT: loại hai đội cùng thi đấu, mỗi người của đội này gặp một người của đội kia? | Yahoo Hỏi & Đáp

Nguyễn Hoàng Bảo Nhi
24 tháng 4 2020 lúc 16:12

Gọi số cầu thủ đội 1 và 2 lần lượt là: a và b

1 cầu thủ đội 1 đấu với 1 cầu thủ đội 2, số trận là b

số cầu thủ đội 1 là a

=> tổng số ván đấu là: ab

=> ab=4(a+b)

=> ab chia hết cho 2

Mà ít nhất 1 đội có số cầu thủ lẻ

=> đội còn lại có số cầu thủ chẵn và chia hết cho 4, giả sử độ đó có a cầu thủ ⇒b là số lẻ 

Ta có: ab=4(a+b)

⇔a(b-4)-4(b-4)=16

⇔(a-4)(b-4)=16

Vì a,b∈Z

⇒ a-4,b-4∈Z

⇒a-4,b-4 là nghiệm nguyên của 16

mà a chia hết cho 4 nên a-4 chia hết cho 4 ta xét các trương hợp:

+) \(\hept{\begin{cases}a-4=4\\b-4=4\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=8\\b=8\end{cases}}\)

(không thoả mãn b lẻ)

+ ) \(\hept{\begin{cases}a-4=8\\b-4=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=12\\b=6\end{cases}}\)

(không thoả mãn b lẻ)

+)\(\hept{\begin{cases}a-4=16\\b-4=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=20\\b=5\end{cases}}\)(thoả mãn)

Vậy mỗi đội có 20 và 5 cầu thủ 

Khách vãng lai đã xóa

Các câu hỏi tương tự
kagamine rin len
Xem chi tiết
Trần Helly
Xem chi tiết
Phan Thị Quỳnh Trang
Xem chi tiết
Kim Minh Anh
Xem chi tiết
Nguyễn Bá Thúc Hào
Xem chi tiết
đinh thị vân anh
Xem chi tiết
Nguyễn Ngọc Phương Thảo
Xem chi tiết
Krissy
Xem chi tiết
đinh thị vân anh
Xem chi tiết