Cho a,b,c khác nhau.C/m
\(\frac{b-c}{\left(a-b\right)\cdot\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\cdot\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\cdot\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
Cho a;b khác 0
Tìm GTLN: \(A=\frac{7\left(a+b\right)^2-9\left(a-b\right)^2}{2014\left(a^2+b^2\right)}\)
Chứng minh các đẳng thức
1) tan2a - tan2b = \(\frac{sin\left(a+b\right)\cdot sin\left(a-b\right)}{cos^2a\cdot cos^2b}\)
2) \(\frac{tan\left(a-b\right)+tanb}{tan\left(a+b\right)-tanb}=\frac{cos\left(a+b\right)}{cos\left(a-b\right)}\)
Cho a,b,c thỏa mãn a+b+c=2. tính giá trị lớn nhất của biểu thức Q=\(\sqrt{\left(2-a\right)\cdot\left(2-b\right)}+\sqrt{\left(2-a\right)\cdot\left(2-c\right)}+\sqrt{\left(2-b\right)\cdot\left(2-c\right)}\)
xin giúp em
Cho a , b , c > 0 . Chứng minh rằng :
\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}+\frac{7}{16}\cdot\frac{max\left\{\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\right\}}{ab+bc+ca}\)
Tính
A=\(\left(\frac{15}{\sqrt{7}+2}+\frac{12}{\sqrt{7}-1}-\frac{8}{3-\sqrt{7}}\right)\cdot\left(3\sqrt{7}+20\right)\)
B=\(\left(9+4\sqrt{5}\right):\left(\frac{\sqrt{5}+2}{\sqrt{5}-2}\right)\)
Tính
a) \(\left(2-\sqrt{3}\right)\cdot\left(2+\sqrt{3}\right)\)
b) \(\left(2\sqrt{3}-\sqrt{5}\right)\cdot\left(2\sqrt{3}+\sqrt{5}\right)\)
Cho a,b,c là độ dài các cạnh của một tam giác . Tính giá trị biểu thức :\(P=\frac{[a^2-\left(b+c\right)^2]\cdot\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
Cho mk hỏi con này ra bao nhiu z: \(A=\frac{\left(\sqrt{x}+2\right)\cdot\left(x-1\right)-\left(\sqrt{x}-2\right)\cdot\left(x+1\right)\cdot\left(x+1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\)