gpt
a) \(\frac{1}{a+b-x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x}\)
b)\(\frac{\left(b-c\right)\left(1+a\right)^2}{x+a^{^2}}+\frac{\left(c-a\right)\left(1+b\right)^2}{x+b^2}+\frac{\left(c-b\right)\left(1+c\right)^2}{x+c^2}=0\)
Tìm các số a,b,c thỏa mãn :
a) \(\frac{\text{x^2}-x+2}{\text{ }\left(x-1\right)^3}=\frac{A}{\left(x-1\right)^3}+\frac{B}{\left(x-1\right)^2}+\frac{C}{x-1}\) b)\(\frac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\frac{A}{x-1}+\frac{Bx+C}{x^2+1}\)
:| Giúp tớ với
1)\(\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
2)\(\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
3)\(\frac{1}{x^2+3x+2}+\frac{2x}{x^3+4x^2+4x}+\frac{1}{x^2+5x+6}\)
Cho 5 số thực khác nhau a,b,c,d,x.Chứng minh :
\(\frac{b+c+d}{\left(b-a\right)\left(c-a\right)\left(d-a\right)\left(x-a\right)}+\frac{a+c+d}{\left(a-b\right)\left(c-b\right)\left(d-b\right)\left(x-b\right)}+\frac{a+b+d}{\left(a-c\right)\left(b-c\right)\left(d-c\right)\left(x-c\right)}+\)
\(\frac{a+b+c}{\left(a-d\right)\left(b-d\right)\left(c-d\right)\left(x-d\right)}=\frac{a+b+c+d-x}{\left(a-x\right)\left(b-x\right)\left(c-x\right)\left(d-x\right)}\)
$ChoA=\frac{\left(x-a\right)^2}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-b\right)^2}{\left(b-a\right)\left(b-c\right)}+\frac{\left(x-c\right)^2}{\left(c-a\right)\left(c-b\right)}$
giải phương trình:
\(\frac{a^2\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{b^2\left(x-a\right)\left(x-c\right)}{\left(b-a\right)\left(b-c\right)}+\frac{c^2\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=x^2\)
Cho A=\(\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}\)
Tính giá trị của khi a,b,c đổi một khác nhau
Bài 1: Cho a,b,c đôi một khác nhau. CMR:
\(\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}+\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}=1\)=1
Bài 2: CMR: nếu \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)và x=y+z thì:
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Cho a, b, c đôi một khác nhau. Tính :
\(M=\frac{\left(x-a\right)\left(x-b\right)}{\left(c-a\right)\left(c-b\right)}+\frac{\left(x-b\right)\left(x-c\right)}{\left(a-b\right)\left(a-c\right)}+\frac{\left(x-c\right)\left(x-a\right)}{\left(b-c\right)\left(b-a\right)}\)