Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Chí Bảo

GPT : 

\(\sqrt[4]{x}+\sqrt{x}+\sqrt[4]{1-x}+\sqrt{1-x}=2\sqrt[4]{\frac{1}{2}}+2\sqrt{\frac{1}{2}}\)

IS
5 tháng 4 2020 lúc 18:53

https://www.facebook.com/khoi.nguyenduykhoi.399 ( face book mình ) kết bạn nhá r mình gửi bài làm cho 

ko chụp ảnh gửi trên OLM đc mà bài  này mình bày những chô trên OLm ko ghi đc 

Nên kết bạn . mình gửi ảnh cho

Khách vãng lai đã xóa
Nguyễn Hoàng Bảo Nhi
5 tháng 4 2020 lúc 21:35

ĐKXĐ : \(0\le x\le1\)

Đặt : \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{1-x}=b\\\sqrt[4]{\frac{1}{2}}=c\end{cases}}\left(a,b,c\ge0\right)\)

Ta có HPT 

\(\hept{\begin{cases}a+a^2+b+b^2=2c+2c^2\\a^4+b^4=2=2c^4\end{cases}\left(^∗\right)}\)

Áp dụng BĐT : 

\(a^2+b^2\le\sqrt{2\left(a^4+b^4\right)}=\sqrt{2.2c^4}=2c^2\left(c>0\right)\left(1\right)\)

\(a+b\le\sqrt{2\left(a^2+b^2\right)}\le\sqrt{2.2c^2}=2c\left(2\right)\)

(1) + (2) vế theo vế \(\Rightarrow a^2+b^2+a+b\le2c^2+2c\)

Để dấu " = " ở (*) xảy ra 

\(\Rightarrow a=b\Rightarrow a^4=b^4\Rightarrow x=1-x\Rightarrow x=\frac{1}{2}\left(TMĐKXĐ\right)\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Ngọc Thanh Tâm
Xem chi tiết
Ngu Người
Xem chi tiết
Phạm Huy Hoàng
Xem chi tiết
Nhi lê
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Đậu Đình Kiên
Xem chi tiết
Nao Tomori
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết