`x=(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}})^2(1>=x>=0)`
`<=>x=((\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}})^2(1+\sqrt{1-\sqrt{x}}))/(1+\sqrt{1-\sqrt{x}})`
`<=>x=(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x})(1-1+\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})`
`<=>x=\sqrt{x}.(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})`
`<=>\sqrt{x}((\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})-1)=0`
Có `x>=0`
`=>1-\sqrt{x}<=1`
`=>1+\sqrt{1-\sqrt{x}}<=2`
`=>1/(1+\sqrt{1-\sqrt{x}})>=1/2`
Mà `(\sqrt{x}+2004)>=2004`
`=>(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x})>=2004`
`=>(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})>=1002>0`
`=>\sqrt{x}=0`
`=>x=0`
Vậy `S={0}`
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow x=\left(2004+\sqrt{x}\right)\left(\dfrac{\sqrt{x}}{1+\sqrt{1-\sqrt{x}}}\right)^2\)
\(\Leftrightarrow x=\dfrac{x\left(2004+\sqrt{x}\right)}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2004+\sqrt{x}}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2004+\sqrt{x}=2-\sqrt{x}+2\sqrt{1-\sqrt{x}}\)
\(\Leftrightarrow1001+\sqrt{x}=\sqrt{1-\sqrt{x}}\)
\(VT\ge1001\) ; \(VP\le1\) nên (1) vô nghiệm