Từ \(x^2+x-1=0\Rightarrow x^2=1-x\) \(\Rightarrow\left\{{}\begin{matrix}x^3=x-x^2\\x^4=x^2-2x+1\end{matrix}\right.\)
\(\Rightarrow x^8=\left(1-x\right)^4=x^4-4x^3+6x^2-4x+1\)
\(x^8=x^2-2x+1-4\left(x-x^2\right)+6x^2-4x+1\)
\(x^8=11x^2-10x+2\)
\(\Rightarrow x^8+10x+13=11x^2+15=x^2+10x^2+15\)
\(=x^2+10\left(1-x\right)+15=\left(x-5\right)^2\)
\(\Rightarrow P\left(x\right)=x+\sqrt{\left(x-5\right)^2}=x+\left|x-5\right|=x+5-x=5\)
\(\Rightarrow P\left(x_1\right)=P\left(x_2\right)=5\)