Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-5\end{matrix}\right.\)
Ta có : \(A=\left(x_1+x_2\right)^2-3x_1x_2\)
\(\Rightarrow4-3\left(-5\right)=4+15=19\)
Vậy A = 19
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-5\end{matrix}\right.\)
Ta có : \(A=\left(x_1+x_2\right)^2-3x_1x_2\)
\(\Rightarrow4-3\left(-5\right)=4+15=19\)
Vậy A = 19
tìm m để pt x\(^2-2\left(m+1\right)x+m^2+2=0\) có 2 nghiệm phân biệt x1;x2 thỏa mãn \(x_1^2+x_1x_2+2=3x_1+x_2\)
cho pt (ẩn x): x2 - ax - 2 = 0 (*)
gọi x1, x2 là hai nghiệm của pt (*). tìm GT của a để biểu thức N = \(x_1^2+\left(x_1+2\right)\left(x_2+2\right)+x_2^2\) có GTNN
cho pt \(x^2-4nx+12n-9=0\)
tìm giá trị của n để pt trên có 2 nghiệm x1; x2 thỏa mãn đẳng thức
\(x_1\left(x_2+3\right)+x_2\left(x_1+3\right)-54=0\)
cho pt: x2 - (m - 1)x- m2+m - 2=0
Gọi x1, x2 là nghiệm của pt. Tìm m để \(B=\left(\frac{x_1}{x_2}\right)^3+\left(\frac{x_2}{x_1}\right)^3\) đạt gtln
Cho pt \(x^2-5x+3\)=0 gọi x1,x2 là hai nghiệm của pt. ko giải pt hãy tính
a, \(C=\left|x_1\right|+\left|x_2\right|\)
b, \(D=\left|x_1-x_2\right|\)
tìm m để pt:x\(^2-2\left(m+1\right)x+m^2+2=0\) có 2 nghiệm phân biệt x1;x2 thỏa mãn \(x_1^2+x_1x_2+2=3x_1+x_2\)
Cho PT: \(2x^2-\left(m+1\right)x+m^2-m=0\). Tìm m để PT có 2 nghiệm x1, x2 sao cho biểu thức: A=(2\(x_1\)+1).(2\(x_2\)+1) có giá trị nhỏ nhất
tìm m để các pt bậc 2 ẩn x sau: \(x^2-\left(m+1\right)x+2=0\) có 2 nghiệm x1, x2 t/m:
\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\) =14
Cho PT: \(x^2-\left(3m-1\right)x+2m^2-m=0\). Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(x_1=x_2^2\)