Cho hàm số y=f(x) có đạo hàm f'(x) = ( x 2 - 1 ) ( x - 2 ) . Gọi S là tập tất cả các giá trị nguyên của tham số m để hàm số f ( x 2 + m ) có 5 điểm cực trị. Số phần tử của tập S là.
A. 4
B. 1
C. 3
D. 2
Cho hàm số g ( x ) = ∫ x x 2 d t ln t với x>1. Tìm tập giá trị T của hàm số
Cho hàm số y = f(x) có đạo hàm f'(x). Hàm số y = f'(x) liên tục trên tập số thực và có bảng biến thiên như sau:
Biết rằng f(-1) = 10 3 , f(2) = 6. Giá trị nhỏ nhất của hàm số g(x) = f 3 ( x ) - 3 f ( x ) trên đoạn [-1;2] bằng
A. 10 3
B. 820 27
C. 730 27
D. 198
Cho hàm số y = f(x) liên tục trên R. Biết đồ thị hàm số y = f’(x) được cho bởi hình vẽ bên, xét hàm số y = g x = f x - x 2 2 . Hỏi trong các mệnh đề sau có bao nhiêu mệnh đề đúng?
(I) Số điểm cực tiểu của hàm số g(x) là 2.
(II) Hàm số g(x) đồng biến trên khoảng (-1;2).
(III) Giá trị nhỏ nhất của hàm số là g(-1).
(IV) Cực đại của hàm số g(x) là 0.
A. 0
B. 1
C. 2
D. 3
Cho hai hàm số y=f(x),y=g(x) có đạo hàm là f'(x),g'(x) Đồ thị hàm số f'(x), g'(x) được cho như hinh vẽ dưới đây
Biết rằng f(0)-f(6)<g(0)-g(6) Giá trị lớn nhất, giá trị nhỏ nhất của hàm số h(x)=f(x)-g(x) trên đoạn [0;6] lần lượt là:
A. h(6),h(2)
B. h(0),h(2)
C. h(2),h(6)
D. h(2),h(0)
Cho hàm số y = f(x) liên tục trên ℝ sao cho m a x x ∈ [ 0 ; 10 ] f ( x ) = f(2) = 4. Xét hàm số g(x) = f x 3 + x - x 2 + 2 x + m . Giá trị của tham số m để m a x x ∈ [ 0 ; 2 ] g ( x ) = 8 là
A. 5
B. 4
C. -1
D. 3
Gọi M, m lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = x(2017 +\(\sqrt{2019-x^2}\)) trên tập xác định của nó . Tính M-m
Gọi S là tập các giá trị nguyên của m để hàm số y = x + 2 m - 3 x - 3 m + 2 đồng biến trên khoảng - ∞ ; 14 . Tổng các phần tử của S bằng
A. -10
B. -9
C. -6
D. -5
Tìm tập giá trị G của hàm số y = log 4 x - x 2 .
A. G = 0 ; 1
B. G = [ - 1 ; 0 )
C. G = - ∞ ; - 1
D. G = ℝ
Cho hàm số f(x) xác định và liên tục trên R. Gọi g(x) là một nguyên hàm của y= x x + f 2 ( x ) hàm số Biết rằng ∫ 1 2 g ( x ) d x = 1 và 2g(2)-g(1)=2 Tích phân
∫ 1 2 x 2 x + f 2 ( x ) d x bằng
A. 1,5
B. 1
C. 3
D. 2