Suppose that x, y, z are positive integers such that x > y > z > 663 and x, y, z satisfy x + y + z = 1998 and 2x + 3y + 4z = 5992. Find x, y, z
Given x,y,x such that x/2 = y/3 = z/5 and x+ 3y + 6z = 82. Find M = x+ y + z
For positive real numbers x,y,z so that: x+y+z = 3. Find the minimum value of expression
A = 1/( x^2 + x) + 1/(y^2+ y) +1/( z^2 +z)
If x, y, z satisfy these equations yz = 3/2 - x2/2; zx = 1/2 - y2/2 and xy = 5/2 - z2/2 then the value of Ιx + y + zΙ is ...........
Nếu x - y - z = 0 and x +2y - 10z = 0 . Tính \(B=\frac{2x^2+4xy}{y^2+z^2}\)
Phân tích đa thức thành nhân tử
d (a² + a)² + 4(a² + a) - 12
e) (x² + x + 1)( x² + x + 2) -12
g) x⁸ + x + 1 h) x¹⁰ + x⁵ + 1
i) x³ ( z -y² ) + y³ ( x - z² ) + z³ ( y - x² ) + xyz( xyz - 1 )
k) x(y - z)² + y(z - x)² + z(x - y)² - x³ - y³ - z³ + 4xyz
l) (x + y + z)³ - (x + y - z)³ - (y + z - x)³ - (z + x - y)³
Pttnt:
a)(x+z)/((x-y)(y-z)) –(x+y)/((x-z)(y-z)) – (y+z)/((x-y(x-z))
b)(x^2+2x-3/(x^2+3x-10) . (x^2-9x+14)/(x^2+7x+12)
Assume that two numbers x and y satisfy: 2x + y = 6.
Find the minimum value of expression A = 4x2 + y2
Tính
a)(x+z)/((x-y)(y-z)) –(x+y)/((x-z)(y-z)) – (y+z)/((x-y(x-z))
b)(x^2+2x-3/(x^2+3x-10) . (x^2-9x+14)/(x^2+7x+12)
thực hiện phép tính
1/x^2+2 +1/x^2+3x+2 +1/x^2+5x+6 +1/x^2+7x+12 +x^2+9x+20
chứng minh hằng đẳng thức
y-z/(x-y)(x-z) +z-x/(y-z)(y-x) +x-y/(z-x)(z-y) =2/x-y +2/y-z +2/z-x