Ta xét :
\(3^{2014}+3^{2015}+3^{2016}+3^{2017}\)
\(=3^{2014}\left(1+3+3^2+3^3\right)\)
\(=3^{2014}.40\)
\(=3^{2013}.3.40\)
\(=3^{2013}.120\)
Mà \(120⋮120\)
\(\Rightarrow3^{2013}.120⋮120\)
\(\Rightarrow A⋮120\)
\(\RightarrowĐPCM\)
ta có A=3^2014+3^2015+3^2016+3^2017
A=3^2013(3+3^2+3^3+3^4)
A=3^2013 x 120 chia hết cho 120 (ĐCPCM)
32014+32015+32016+32017
=32013.3+32013.32+32013.33+32013.34
=32013.3+32013.9+32013.27+32013.81
=32013.(81+27+9+3)
=32013.120
=>A chia hết cho 120