\(3B=3+3^2+.......+3^{103}\)
\(3B-B=\left(3+3^2+.......+3^{103}\right)-\left(1+3+..........+3^{102}\right)\)
\(\Rightarrow2B=3^{103}-1\)
\(\Rightarrow B=\frac{3^{102}-1}{2}\)
\(B=1+3+3^2+...+3^{102}\)
\(3B=3+3^2+3^3+...+3^{103}\)
\(3B-B=\left(3+3^2+3^3+...+3^{103}\right)-\left(1+3+3^2+..+3^{102}\right)\)
\(2B=3^{103}-1\)
\(B=\frac{3^{103}-1}{2}\)
Ta có B=1+3+32+...+3102
3B=3+32+33+...+3103
-
B=1+3+32+...+3102
----------------------------------------------
=> 3B-B=3103-1
=>2B=3103-1
=>B=(3103-1):2
Chúc bạn học giỏi nha ^-^