H là trực tâm của tam giác ABC => AH là đường cao => AH vuông góc BC
H là trực tâm của tam giác ABC => AH là đường cao => AH vuông góc BC
Cho tam giác ABC có 3 góc nhọn, hai đường cao BE, CF cắt nhau tại H. Chứng minh:
a. AH vuông góc BC tại D
b.CM CE.CA= CD.CB
cho tam giác ABC có ba góc nhọn, hai đường cao BE .CF cắt nhau tại H ,tia AH cắt BC tại D . Vẽ DM vuông góc với AB tại M , DN vuông góc AC tại N , DK vuông góc CF tại K . chứng minh M,N,K thẳng hàng.
ai giúp em với ạ
cho tam giác abc có 3 góc nhọn hai đường cao be và cf cắt nhau tại h
chứng minh ah vuông góc bc tại d
chứng minh ce.ca=cd.cb
Cho tam giác ABC có 3 góc nhọn, hai đường cao BE,CF cắt nhau tại H. Chứng minh rằng AH vuông góc với BC
Chi tam giác ABC nhọn, đg cao BE,CF cắt nhau tại tại H
a)CM ;AE*AC = AF*AB VÀ TAM GIÁC AEF ĐỒNG DẠNG VS TAM GIÁC ABC
b)Qua B kẻ đg thẳng song song vs CF cắt AH ở M ,AH CÁT BC Ở D CM BD^2=AD*DM
c)CHO GOÁC ACB BẰNG 45 ĐỘ ,KẺ AK VUÔNG GÓC VỚI EF TẠI K, TÍNH TỈ SỐ DIỆN TÍCH CỦA TAM GIÁC AFH VÀ TAM GIÁC AKE
d)cm AB*AC=BE*CF+AE*AF
Cho tam giác ABC có ba góc nhọn, đường cao BE, CF cắt nhau tại H. a) CM: tam giác ABE đồng dạng tam giác ACF. b) CM: góc AEF = góc ABC. c) AH cắt BC tại D, đường thẳng qua B song song với AC cắt hai tia EF, ED theo thứ tự tại M, N. CM: BM=BN
cho tam giác ABC có ba góc nhọn . ba đường cao AD, BE, CF cắt nhau tại H. Gọi M, N là trung điểm của AH, và BC.
CM : ME vuông góc với EN
Cho tam giác abc có 3 góc nhọn 2 đừơng cao be,cf cắt nhau tại h
A, cm ah vuông góc với bc
B, ae.ac=af.ab
C, tam giác aef đồng dạng với tam giác abc