\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\Rightarrow x=16;y=24;z=30\)
x/2 = y/3, y/4 = x/5 và x+y-z=10
ta có:
x/2 = y3
⇒ x/8 = y/12 (1)
y/4 = z/5
⇒ y/12 = z/15 (2)
từ (1) và (2)
⇒ x/8 = y/12 = z/15
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x/8 = y/13 = z/15 = x+y-z/8+13-15 = 10/5 = 2
x/8 = 2 ⇒ x = 8 . 2 = 16
y/13 = 2 ⇒ y = 13 . 2 = 24
z/15 = 2 ⇒ z = 15 . 2 = 30
vậy x = 16
y = 24
z = 30