\(\dfrac{1}{20}+\dfrac{1}{44}+\dfrac{1}{77}+...+\dfrac{2}{x\left(x+3\right)}=\dfrac{101}{770}\\ \Leftrightarrow\dfrac{3}{2}\left(\dfrac{1}{20}+\dfrac{1}{44}+\dfrac{1}{77}+...+\dfrac{2}{x\left(x+3\right)}\right)=\dfrac{3}{2}.\dfrac{101}{770}\\ \Leftrightarrow\dfrac{3}{40}+\dfrac{3}{88}+\dfrac{3}{154}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\\ \Leftrightarrow\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x\left(x+3\right)}=\dfrac{303}{1540}\\ \Leftrightarrow\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{303}{1540}\\ \Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\\ \Leftrightarrow x+3=308\\ \Leftrightarrow x=305\)