Đề thiếu: x > 1 thì mới tìm được min
\(A=\frac{x}{2}+\frac{2}{x-1}=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\)
Áp dụng bđt Cô-si được
\(A=\frac{x-1}{2}+\frac{2}{x-1}+\frac{1}{2}\ge2\sqrt{\frac{x-1}{2}.\frac{2}{x-1}}+\frac{1}{2}=2+\frac{1}{2}=\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{x-1}{2}=\frac{2}{x-1}\)
\(\Leftrightarrow\left(x-1\right)^2=4\)
Mà x > 1 nên x - 1 > 0
=> x - 1 = 2
=> x = 3
Vậy \(A_{min}=\frac{5}{2}\Leftrightarrow x=3\)