Đặt vế trái biểu thức là P
- Nếu một trong các số bằng 0 thì biểu thức vô nghĩa
- Nếu một trong các số bằng 1 thì vế trái lớn hơn 1 nên đẳng thức ko xảy ra
- Nếu tất cả các số đều lớn hơn 1, không mất tính tổng quát, giả sử \(a_1< a_2< ...< a_n\)
\(\Rightarrow a_1\ge2;a_2\ge3;...;a_n\ge n+1\)
\(\Rightarrow P=\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_n^2}\le\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{\left(n+1\right)^2}\)
\(\Rightarrow P< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\)
\(\Rightarrow P< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}< 1\)
\(\Rightarrow\) Không thể tồn tại đẳng thức \(P=1\)