Chứng minh:
\(cos\left(\frac{17\pi}{4}+x\right).cos\left(\frac{\pi}{4}-x\right)+sin^2x=\frac{1}{2}\)
chứng minh
a , \(sinasin\left(\frac{\pi}{3}-a\right)sin\left(\frac{\pi}{3}+a\right)=\frac{1}{4}sin3a\) Áp dụng tính \(sin\frac{\pi}{9}sin\frac{2\pi}{9}sin\frac{4\pi}{9}\)
b , \(cosacos\left(\frac{\pi}{3}-a\right)cos\left(\frac{\pi}{3}+a\right)=\frac{1}{4}cos3a\) Áp dụng tính \(cos\frac{\pi}{18}cos\frac{5\pi}{18}cos\frac{7\pi}{18}\)
\(\frac{1}{\cos^2\left(x\right)}-\tan^2x-\sin^2x\)
giải hệ pt
\(\left\{{}\begin{matrix}\frac{8xy}{x^2+6xy+y^2}+\frac{17}{8}\left(\frac{y}{x}+\frac{x}{y}\right)=\frac{21}{4}\\\sqrt{x-16}+\sqrt{y-9}=7\end{matrix}\right.\)
Cho a,b,c>0 chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) (1). Áp dụng chứng minh các BĐT sau:
a) \(\left(a^2+b^2+c^2\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{3}{2}\left(a+b+c\right)\)
b) Cho x,y,z>0 tm x+y+z=1. Tìm GTLN của bt \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
I Đại Số
bài 1 giải phương trình
a )\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\)
Bài 2 Tìm giá trị tham số m để phương trình \(\frac{1}{2}\left(y^2+\frac{7}{4}\right)-2y\left(m-1\right)=2m^2-8\) nhận \(y=\frac{1}{2}\)là nghiệm.
Bài 3 giải phương trình
a)\(\left(x-1\right)^2=\left(2x+5\right)^2\)
b)\(\frac{\left(x-2\right)^3}{2}=x^2-4x+4\)
c)\(x^3+8=-2x\left(x+2\right)\)
d)\(x^2+8x-5=0\)
e)\(\left(x^2-2x\right)^2-6\left(x^2-2x\right)+9=0\)
g)\(\left(4x-5\right)^2+7\left(4x-5\right)-8=0\)
h)\(\left(x+3\right)^2\left(x^2+6x+1\right)=9\)
j)\(2x\left(8x-1\right)\left(8x^2-x+2\right)-126=0\)
II HÌNH HỌC
Bài1: Cho tam giác ABC có MN//BC và \(\frac{AM}{AB}=\frac{1}{2};MN=3cm\) . Tính BC
Bài 2: Cho hình thang ABCD(AB//CD); hai đường chéo cắt nhau tại O. Qua O kẻ đường thẳng song song với AB cắt AD lần lượt tại M và N . Chứng minh OM=ON.
Bài 3: Trên các cạnh của AB, AC của ΔABC lần lượt lấy điểm M và N sao cho \(\frac{AM}{MB}=\frac{AN}{NC}\). Gọi I là trung điểm của BC, K là giao điểm của AI và MN. Chứng minh KM=KN
Bài 4: Cho hình vuông ABCD cạnh 6cm. Trên tia đối của AD lấy điểm I sao cho AI=2cm. IC cắt AB tại K. Tính độ dài IK và IC
Cho x, y là các số thực thỏa mãn \(2\left(x^2+y^2\right)=xy+1\)
Chứng minh rằng \(\frac{18}{25}\le7\left(x^4+y^4\right)+4x^2y^2\le\frac{70}{33}\)
\(\frac{1}{2\left(x-1\right)}+\frac{3}{x^2-1}=\frac{1}{4}\)
\(\frac{x-1}{x}-\frac{3x}{2x-2}=-\frac{5}{2}\)
\(\frac{x+2}{2x-3}-\frac{1}{2x+3}=1-\frac{2x^2-x-4}{4x^2-9}\)
c1. điều kiện của tham số thực m để phương trình sinx +(m+1)cosx=\(\sqrt{2}\) vô nghiệm là
c2. Hàm số y=sinx đồng biến trên khoảng nào sau đây?
A. \(\left(\dfrac{5\pi}{4},\dfrac{7\pi}{4}\right)\) B.\(\left(\dfrac{9\pi}{4},\dfrac{11\pi}{4}\right)\) C. \(\left(\dfrac{7\pi}{4},3\pi\right)\) D. \(\left(\dfrac{7\pi}{4},\dfrac{9\pi}{4}\right)\)
Giải thích rõ chi tiết cách lm giúp tui với nha, tự học nên mù mờ quá