muốn nhanh hải từ từ chứ! :D
1. Vì $n^3$ và $n$ cùng tính chẵn lẻ nên\(n^3+n+2\) chia hết cho 2.
2. Chắc đề là a^2+b^2+c^2=a^3+b^3+c^3=1.
\(<1>\) Ta có:
\(n^3+n+2=\left(n^3+1\right)+n+1=\left(n+1\right)\left(n^2-n+1\right)+n+1=\left(n+1\right)\left(n^2-n+2\right)\)
Vợi mọi \(n\in N^{\text{*}}\) thì \(n+1>0\) và \(n^2-n+2>0\)
Vậy, \(n^3+n+2\) là một hợp số.
\(<2>\) Từ giả thiết đã nêu trên, ta có:
\(a^2+b^2+c^2=a^3+b^3+c^3\) \(\left(=1\right)\)
nên \(a^3+b^3+c^3-\left(a^2+b^2+c^2\right)=0\)
\(\Leftrightarrow\) \(a^3-a^2+b^3-b^2+c^3-c^2=0\)
\(\Leftrightarrow\) \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
\(\Leftrightarrow\) \(^{a=b=c=1}_{a=b=c=0}\) (dùng dấu ngoặc vuông nhé)
Kết hợp với giả thiết, ta suy ra \(a,b,c\) nhận hai giá trị là \(0\) và \(1\)
Do đó, \(b^{2012}=b^2;\) \(c^{2013}=c^2\)
Vậy, \(S=a^2+b^{2012}+c^{2013}=a^2+b^2+c^2=1\)
xét n^3+n luon chẵn=>n^3+n+2 luon chẵn => ĐPCM