f) Cho α, Blà hai góc nhọn. Chứng minh rằng:
\(\cos^2\alpha-\cos^2\beta=\sin^2\alpha-\sin^2\beta=\dfrac{1}{1+\tan^2\alpha}-\dfrac{1}{1+tan^2\beta}\)
Câu 50**: Cho góc nhọn α tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\)bằng
A. \(tan^2\alpha\) ; B . \(cot^2\) α ; C . 0 ; D. 1 .
giải hộ mik vs
1. Với \(\alpha\) là góc nhọn và \(\tan\alpha=\dfrac{1}{2}\). Không dùng máy tính hãy tính \(\cos\left(90^o-\alpha\right)\)
2.
a. \(\sin\alpha=\dfrac{4}{5}\). Tính \(\tan\alpha\)
b. so sánh \(\tan28^o\) và \(\sin28^o\)
Câu 50**: Cho góc nhọn tuỳ ý giá trị biểu thức \(\dfrac{tan\alpha}{cot\alpha}+\dfrac{cot\alpha}{tan\alpha}-\dfrac{sin^2\alpha}{cos^2\alpha}\) bằng
A. \(tan^2\alpha\) ; B . \(cot^2\alpha\) ; C . 0 ; D. 1 .
CMR:\(sin^2\beta-sin^2\alpha=\frac{1}{1+tan^2\alpha}-\frac{1}{1+tan^2\beta}\)
Giúp mik với ạ
Chứng minh các hệ thức sau:
a) \(\frac{1-cos\alpha}{sin\alpha}=\frac{sin\alpha}{1+cos\alpha}\)
b) \(tan^2\alpha-sin^2\alpha=tan^2\alpha.sin^2\alpha\)
c) \(\frac{1-tan\alpha}{1+tan\alpha}=\frac{cos\alpha-sin\alpha}{cos\alpha+sin\alpha}\)
Chứng minh rằng:
*\(\tan3\alpha=\frac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha}\)
*\(\sin^6\alpha-\cos^6\alpha=-\cos2\alpha\left(1-\sin^2\alpha\cos^2\alpha\right)\)
Chứng minh:
a) \(\tan^2\alpha-\sin^2\alpha=\tan^2\alpha.\sin^2\alpha\)
b) \(\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{17\cos\alpha}\)
\(\frac{\sin^2\alpha}{\cos^2\alpha}+\tan^2.\left(90-\alpha\right)+2=\left(\tan\alpha+\cot\alpha\right)^2\)
mn giúp với ạ