\(= \frac{1}{99} - \left(\right. \frac{1}{99.98} + \frac{1}{98.97} + \frac{1}{97.96} + . . . + \frac{1}{3.2} + \frac{1}{2.1} \left.\right)\)
\(= \frac{1}{99} - \left(\right. \frac{1}{99} - \frac{1}{98} + \frac{1}{98} - \frac{1}{97} + \frac{1}{97} - \frac{1}{96} + . . . + \frac{1}{3} - \frac{1}{2} + \frac{1}{2} - \frac{1}{1} \left.\right)\)
\(= \frac{1}{99} - \left(\right. \frac{1}{99} - 1 \left.\right) = \frac{1}{99} - \frac{1}{99} + 1 = 1\)