Giới hạn lim x → 3 x + 1 - 5 x + 1 x - 4 x - 3 bằng a b (Phân số tối giản). Giá trị thực của a - b là
A. 1
B. 1 9
C. -1
D. 9 8
4. Tính giới hạn \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-x-1}{2x^2-x}_{ }\)
5. Tính giới hạn:
a) \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}_{ }\)
b) \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}_{ }\)
Biết \(\lim\limits_{x->+\infty}\) \(\left(\sqrt{25x^2+4\sqrt{2}+5}-5x\right)=\dfrac{a\sqrt{b}}{c}\) trong đó a,b,c là các số nguyên duơng, phân số \(\dfrac{a}{c}\) tối giản và \(a>1\). Tính \(S=a^2+b^2+c^2\)
Giới hạn lim x → 2 x + 1 - 5 x - 1 2 - 3 x - 2 = a b ( phân số tối giản). Giá trị của A= 2 a / b + a / 2 là
A. 2 9
B. - 2 9
C. - 5 9
D. 13 9
Giới hạn lim x → 0 x + 9 + x + 16 - 7 x = a b (phân số tối giản) thì giá trị A= b a - b 8 là:
A. 7 24
B. 3 7
C. 22 7
D. 7 22
Câu 1: Tính giới hạn
a, lim\(\dfrac{2-5^{n-2}}{3^n=2.5^n}\) b,lim\(\dfrac{2-5^{n+2}}{3^n-2.5^n}\)
Câu 2 :CMR :\(x^4+x^3-3x^2+x+1=0\) có ít nhất một nghiệm âm lớn hơn -1
Câu 3: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M,N lần lượt là trung điểm của AD và SD. Tìm số đo góc giữa 2 đường thẳng MN và SC
Biết lim x → ∞ ( x + 1 ) 2 x + 1 5 x 3 + x + 2 = - a b trong đó a, b là các số nguyên dương và a b là phân số tối giản. Giá trị của tích ab bằng
A.30
B.42
C.10
D.36
Gọi `bb A` là giới hạn của hàm số `f(x)=[x+x^2+x^3+...+x^50 -50]/[x-1]` khi `x -> 1.` Tính giá trị của `bb A.`
Tính các giới hạn sau:
a) $\underset{x\to 3}{\mathop{\lim }}\,\left( x+2 \right);$
b) $\underset{x\to +\infty }{\mathop{\lim }}\,\left( {{x}^{2}}-x+1 \right).$