bài 49; tìm x;
1, 3x ( x - 7) 2x - 14 = 0
2, x mũ 3 + 3x mũ 2 - ( x + 3) = 0
3, 15x - 5 + 6x mũ 2 - 2x = 0
4, 5x - 2 - 25x mũ 2 + 10x = 0
bài 9; tìm x
1, 3x( x - 7) 2x - 14 = 0
2, x mũ 3 + 3x mũ 2 - ( x + 3 )= 0
3, 15x - 5 + 6x mũ 2 - 2x =0
4, 5x - 2 - 25x mũ 2 + 10x = 0
Bài 1 : Rút gọn
a) (x+2)(x-2) - (x-2)(x+5 )
b) 2x(3x mũ 2 y + 4x mũ 2 y -3)
c) (3x+1) tất cả mũ 2 - (1 -2x) mũ 2
d) x mũ 2 -4-(x+2 ) mũ 2
e) (x-4)(x+4) -2x(x+3) + (x+3) mũ 2
f) (6x+1) mũ 2 -2(6x+1)(6x-1)+(6x-1) mũ 2
so sánh các đa thức sau theo luỹ thừa giảm dần của biến và thực hiện phép tính chia
d, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
e, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
i, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
m, ( - x mũ 3 + 3x + x mũ 4 + x mũ 2 ) : ( x mũ 2 - 2x + 3 )
sắp xếp các đa thức sau theo luỹ thừa giảm dần của biến rồi thực hiện phép tính chia
b, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
c, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
d, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
e, ( - 3x mũ 3 + 3x + x mũ 4 + x mũ 2 ) : ( x mũ 2 - 2x + 3 )
j, ( x + 1 ) mũ 2 - ( 2x - 1 ) mũ 2 = 0
k, 8x mũ 3 + 6x - 1 = 12x mũ 2
l, x mũ 3 + 15x mũ 2 + 75x + 125 = 0
pt đa thức thành nt :
a , 4 x mũ 2 - 2x - y mũ 2 - y
b, 9 x mũ 2 - 25 y mũ 2 - 6x + 10y
c, x mũ 3 - 2 x mũ 2 + 2x - 1
d, x mũ 4 + 2 x mũ 3 - 4x - 4
bài 49; tìm x
1, x mũ 3 + 3x mũ 2 - ( x + 3 )
2, 15x - 5 + 6x mũ 2 - 2x = 0
3, 5x - 2 - 25x mũ 2 + 10x = 0
chứng minh các giá trị biểu thức sau ko phụ thuộc vào x
a, A = [ 3X + 2 ] [ 9X MŨ 2 - 6X + 4 ] - 3[ 9X MŨ 3 - 2 ]
b, B = [ X+ 1] MŨ 3 - [X - 1][ X MŨ 2 + X + 1 ] - 3X[ X + 1 ]
C, C= 6[X + 2] [ X MŨ 2 - 2X ] [X MŨ 2 - 2X + 4 ] - 6X MŨ 3 - 2
D, D= 2 [3X + 1][9X MŨ 2 - 3X + 1] - 54X MŨ 3