\(\sqrt{25-x^2}-\sqrt{9-x^2}=2\)
Đk:\(-3\le 0\le3\)
\(\Leftrightarrow\left(\sqrt{25-x^2}-5\right)-\left(\sqrt{9-x^2}-3\right)=0\)
\(\Leftrightarrow\dfrac{25-x^2-25}{\sqrt{25-x^2}+5}-\dfrac{9-x^2-9}{\sqrt{9-x^2}+3}=0\)
\(\Leftrightarrow\dfrac{-x^2}{\sqrt{25-x^2}+5}-\dfrac{-x^2}{\sqrt{9-x^2}+3}=0\)
\(\Leftrightarrow-x^2\left(\dfrac{1}{\sqrt{25-x^2}+5}-\dfrac{1}{\sqrt{9-x^2}+3}\right)=0\)
\(\Rightarrow x=0\)