Đk : \(\hept{\begin{cases}x-2\ge0\\x-1\ge\end{cases}}\Leftrightarrow x\ge2\left(1\right)\)
Nhẩm thấy x= 2 là nghiệm của phương trình nên ta thêm bớt để nhóm nhân tử chung là x = 2
\(\left(x-2\right)+\sqrt{x-2}=2\left(\sqrt{x-1}-1\right)\)\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}+1\right)=\frac{2\left(\sqrt{x-1}+1\right)\left(\sqrt{x-1}-1\right)}{\left(\sqrt{x-1}+1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}+1\right)=\frac{2\left(x-1-1\right)}{\left(\sqrt{x-1}+1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-2}+1\right)=\frac{2\left(x-2\right)}{\left(\sqrt{x-1}+1\right)}\)
\(\Leftrightarrow\sqrt{x-2}\left[\sqrt{x-2}+1-\frac{2\sqrt{x-2}}{\sqrt{x-1}+1}\right]=0\)
Nếu \(\sqrt{x-2}=0\Leftrightarrow x=2\)Nếu \(\left[\sqrt{x-2}+1-\frac{2\sqrt{x-2}}{\sqrt{x-1}+1}\right]=0\)vì với \(x\ge2\) thì \(\left[\sqrt{x-2}+1-\frac{2\sqrt{x-2}}{\sqrt{x-1}+1}\right]\ge1\)nên phương trình vô nghiệmvậy nghiệm của phương trình là \(x=2\)