\(\left\{{}\begin{matrix}\left(\sqrt{4x^2+3}-2x\right)\left(\sqrt{y^2-2y+4}-y+1\right)=3\\\sqrt{4x^2+2y+2}-\sqrt{3x+y}=2x+1\end{matrix}\right.\)
giải hệ pt
GIẢI CÁC PT SAU:
x2 - 6x + 9=\(4\sqrt{x^2-6x+6}\)
x2 - x + 8 - \(4\sqrt{x^2-x+4}=0\)
x2 + \(\sqrt{4x^2-12x+44}=3x+4\)
a, Vẽ đồ thị hàm số y= \(\sqrt{4x^2-4x+1}\) + \(\sqrt{x^{2^{ }}-4x+4}\)
b, Biện luận theo m số nghiệm của phương trình:
\(\sqrt{4x^{2^{ }}-4x+1}\)+ \(\sqrt{x^{2^{ }}-4x+4}\) = m
GIẢI PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
\(\sqrt{4X+3}+\sqrt{2X+1}=6X+2\cdot\sqrt{8X^2+10X+3}-16\)
GIẢI CÁC PT SAU:
\(\sqrt{5x+10}=8-x\)
\(\sqrt{4x^2+x-12}=3x-5\)
\(\sqrt{x^2-2x+6}=2x-3\)
\(\sqrt{3x^2-2x+6}+3-2x=0\)
GIẢI PT SAU:
X2+\(\sqrt{4x^2-12x+44}=3x+4\)
Giải pt:
\(\sqrt{x^2+10x+21}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
\(4\left(x+1\right)^2=\left(2x+10\right)\left(1-\sqrt{3+2x}\right)^2\)
\(\frac{1}{1-\sqrt{1-x}}-\frac{1}{1+\sqrt{1-x}}=\frac{\sqrt{3}}{x}\)
\(\sqrt{x+3}+2x\sqrt{x+1}=2x+\sqrt{x^2+4x+3}\)
\(\sqrt{x-2}+\sqrt{4-x}=x^2-6x+11\)
Giaỉ phương trình sau: \(\sqrt{4x+1}-\sqrt{3-x}+4x^2-5x-8=0\)