\(\Leftrightarrow\frac{x^2+2x-x+2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+x-2=2\)
\(\Leftrightarrow x^2+x-4=0\)
Làm nốt
\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\cdot\left(x-2\right)}\)
\(\frac{x\cdot\left(x+2\right)-\left(x-2\right)}{x\cdot\left(x-2\right)}=\frac{2}{x\cdot\left(x-2\right)}\)
\(\frac{x^2+2x-x+2}{x\cdot\left(x-2\right)}=\frac{2}{x\cdot\left(x-2\right)}\)
\(x^2+x+2=2\)
\(x^2+x=0\)
\(x\cdot\left(x+1\right)=0\)
\(\hept{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}}\)