We have two cases:
+) If \(x\ge2016\)then \(x-2016\ge0\Rightarrow\left|x-2016\right|=x-2016\)
Equation becomes: \(x-2016=2016x\)
\(\Leftrightarrow2015x=-2016\Leftrightarrow x=\frac{-2016}{2015}\)(not satisfied)
+) If \(x< 2016\)then \(x-2016< 0\Rightarrow\left|x-2016\right|=2016-x\)
Equation becomes: \(2016-x=2016x\)
\(\Leftrightarrow2017x=2016\Leftrightarrow x=\frac{2016}{2017}\)(satisfied)
So \(x=\frac{2016}{2017}\)