\(VT=1.\sqrt{x}+2.\sqrt{x+3}\le\frac{x+1}{2}+\frac{2^2+x+3}{2}=x+4=VP\)
Đúng 0
Bình luận (0)
\(VT=1.\sqrt{x}+2.\sqrt{x+3}\le\frac{x+1}{2}+\frac{2^2+x+3}{2}=x+4=VP\)
giai p.t : \(x\sqrt{x^2-x+1}+4\sqrt{3x+1}=x^2+x+3\)
giai p.t :\(\sqrt{\frac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
giai p.t :\(\sqrt{2x^2+x+6}+\sqrt{x^2+x+2}=x+\frac{4}{x}\)
giai p.t \(\frac{36}{\sqrt{x-2}}+\frac{4}{\sqrt{y-1}}=28-4\sqrt{x-2}-\sqrt{y-1}\)
giai p.t : \(\sqrt[3]{1-x}+\sqrt[3]{1+x}=1\)
giai p.t : \(\sqrt{x+1}-\sqrt{x-7}=\sqrt{12-x}\)
giai p.t : \(\frac{1}{x}+\frac{1}{\sqrt{2-x^2}}=2\)
giai phương trình
(x+1)(x+2) = 3 \(\sqrt{x\left(x+3\right)}\)
(\(\sqrt{x+4}\)-2)(\(\sqrt{4-x}\) +2) = 2x
giai pt
\(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)
\(\sqrt{x^2-x+4}-x^2+x+2=0\)
\(\sqrt[3]{x+7}+\sqrt[3]{1-x}=2\)