Ta có \(\frac{12}{x^2+2x+4}-\frac{5}{x^2+2x+5}=2\)
<=>\(12\left(x^2+2x+5\right)-5\left(x^2+2x+4\right)=2\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow12x^2+24x+60-5x^2-10x-20=2x^4+8x^3+26x^2+36x+40\)
\(\Leftrightarrow7x^2+14x+40=2x^4+8x^3+26x^2+36x+40\)
\(\Leftrightarrow2x^4+8x^3+19x^2+22x=0\)
\(\Leftrightarrow x\left(2x^3+8x^2+19x+22\right)=0\)
\(\Leftrightarrow x\left(2x^3+4x^2+4x^2+8x+11x+22\right)=0\)
\(\Leftrightarrow x\left[2x^2\left(x+2\right)+4x\left(x+2\right)+11\left(x+2\right)\right]=0\)
\(\Leftrightarrow x\left(x+2\right)\left(2x^2+4x+11\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy PT có nghiệm duy nhất S ={0 ; -2 } vì( \(2x^2+4x+11\ne0\))