Mình thích nhân phân phối không thích ghép
(x-3)^3=x^3-3.3.x^2+3.3^2.x-3^3
ok
(x-3)^3=27+19=54
\(x=3+\sqrt[3]{54}=3+3\sqrt{2}\)
Bài này giải theo phương trình tích
Ta có : x^3 - 9x^2 + 27x =19
<=> x^3 - 9x^2 + 27x -19 = 0
<=> x^3 - x^2 - 8x^2 + 8x + 19x -19 = 0
<=> x^2(x-1) - 8x(x-1) + 19(x-1) = 0
<=> (x-1)(x^2 - 8x + 19) = 0
Ta CM được x^2 - 8x + 19 >0
=> x-1= 0 <=> x=1
Vậy phương trình có nghiêm x=1