- Đặt t = x2+x+1 (*), thay (*) vào phương trình ta được:
t.(t+1) = 12
<=> t2 + t - 12 = 0
<=> t2 + 4t - 3t - 12 = 0
<=> t.(t+4) - 3.(t+4) =0
<=> (t-3).(t+4) = 0 (a)
Thay t = x2+x+1 vào (a) ta được:
( x2+x-2).( x2+x+5) = 0
<=> (x2+2x-x-2).(x2+x+5) = 0
<=> [x(x+2)-(x+2)].(x2+x+5) = 0
<=> (x-1)(x+2)(x2+x+5) = 0
<=> x-1=0 hoặc x+2=0 hoặc x2+x+5=0
- Trường hợp 1: x-1 =0 <=> x = 1.
- Trường hợp 2: x+2 = 0 <=> x = -2.
- Trường hợp 3:
x2+x+5 =0 (b)
<=> x2 + 2.x.1/2 + (1/2)2 + 19/4 = 0
<=> (x+1/2)2 +19/4 = 0
Vì (x+1/2)2 >= 0 với mọi x.
=> (x+1/2)2 +19/4 # 0 với mọi x.
Nên (b) vô lí.
Vậy phương trình có tập nghiệm: S={-2;1}