Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lưu Hương

Giải phương trình:

x2-4x+\(\frac{1}{x+1}\)+2=-x2-5x+\(\frac{1}{2x+1}\)

Hà Ngọc Lan
12 tháng 7 2020 lúc 8:13

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$###############################@@@@@@@@@@@@@@@@@@@@@@@$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$###############################@@@@@@@@@@@@@@@@@@@@@@@

Khách vãng lai đã xóa
Phan Nghĩa
12 tháng 7 2020 lúc 22:22

\(x^2-4x+\frac{1}{x+1}+2=-x^2-5x+\frac{1}{2x+1}\left(ĐK:x\ne-1;-\frac{1}{2}\right)\)

\(< =>x^2-4x+\frac{1}{x+1}+2+x^2+5x-\frac{1}{2x+1}=0\)

\(< =>2x^2+x+\frac{2x+3}{x+1}-\frac{1}{2x+1}=0\)

\(< =>2x^2+x=\frac{1}{2x+1}-\frac{2x+3}{x+1}\)

\(< =>2x^2+x=\frac{x+1-\left(2x+1\right)\left(2x+1\right)+4x+2}{\left(x+1\right)\left(x+1\right)+x^2+x}\)

\(< =>2x^2+x=\frac{x+1-4x^2-4x-1+4x+2}{x^2+2x+1+x^2+x}\)

\(< =>2x^2+x=\frac{x-4x^2+2}{2x^2+3x+1}\)

\(< =>\left(2x^2+x\right)^2+\left(2x+1\right)^2x=x-4x^2+2\)

\(< =>4x^4+8x^3+9x^2-2=0\)

nhờ bạn nào đó giải giúp ạ

Khách vãng lai đã xóa

Các câu hỏi tương tự
anh minh
Xem chi tiết
Sorcerer_of_Dark_Magic
Xem chi tiết
Dốt Bền Ngu Lâu
Xem chi tiết
hoàng thị hoa
Xem chi tiết
Trọng Đặng Đình
Xem chi tiết
Nữ hoàng sến súa là ta
Xem chi tiết
gh
Xem chi tiết
Nguyễn Linh
Xem chi tiết
Wendy
Xem chi tiết