Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Tuấn

Giải phương trình

\(\sqrt{x^2-\frac{1}{4}+\sqrt{x^2+x+\frac{1}{4}}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\)

Cô Hoàng Huyền
13 tháng 5 2016 lúc 9:29

\(pt\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\sqrt{\left(x+\frac{1}{2}\right)^2}}=\frac{1}{2}\left(2x^3+x^2+2x+1\right)\Leftrightarrow\sqrt{x^2-\frac{1}{4}+\left|x+\frac{1}{2}\right|}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)

Ta thấy vế phải bằng \(\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\), vế trái là căn thức nên để pt có nghiệm thì vế phải phải dương. Hay \(2x+1\ge0\)

Với \(x\ge\frac{-1}{2}\) ta có \(pt\Leftrightarrow\sqrt{x^2-\frac{1}{4}+x+\frac{1}{2}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\)

\(\Leftrightarrow\sqrt{x^2+x+\frac{1}{4}}=\frac{1}{2}\left(x^2+1\right)\left(2x+1\right)\Leftrightarrow x+\frac{1}{2}=\left(x^2+1\right)\left(x+\frac{1}{2}\right)\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(x^2+1-1\right)=0\Leftrightarrow x^2\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=0\) hoặc \(x=\frac{-1}{2}\)

Vậy pt đã cho có 2 nghiệm là \(x=0;x=\frac{-1}{2}\)

Chúc em luôn học tập tốt :))


Các câu hỏi tương tự
Nguyễn tuấn nghĩa
Xem chi tiết
Trang-g Seola-a
Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
Nguyễn Mai Quỳnh Anh
Xem chi tiết
Ngọc Quách
Xem chi tiết
Phạm Thu Hoài
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
Phan Lê Kim Chi
Xem chi tiết
Âu Dương Thiên Vy
Xem chi tiết