1)ĐK : ........
đặt \(\sqrt{x+5}=a;\sqrt{x+2=b}\) ta có \(a^2-b^2=x+5-x-2=3\)
pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
=> \(\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(1+ab\right)=0\)
=> \(\left(a-b\right)\left(a+b-ab-1\right)=0\)
=> \(\left(a-b\right)\left(a-1\right)\left(1-b\right)=0\)
đến đây bạn tự giải nha
2) xét
VT = \(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{1}+\sqrt{9}=4\)
Dấu = xảy ra khi x =3
\(-5-x^2+6x=-\left(x-3\right)^2+4\le4\)
Dấu bằng xảy ra tại x = 3
=> VT = VP = 4 tại x = 3
Vậy x = 3 là n* duy nhất