\(\Leftrightarrow x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)+2\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+2\right)=0\)
Vì x^2 + 2 > 0 \(\forall x\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
Vậy ...
\(x^4+x^3+2x-4=0\Leftrightarrow\left(x^4-1\right)+\left(x^3-1\right)+\left(2x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2+1\right)+\left(x-1\right)\left(x^2+x+1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x+1+x^2+x+1+2\right)=0\Leftrightarrow\left(x-1\right)\left(x^3+2x^2+2x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2+2\right)=0\text{ mà }x^2+2>0\text{ nên:}x-1=0\text{ hoặc:}x+2=0\)
x=1 hoặc x=-2