Đặt \(\sqrt{x^2+7}=a\left(a>0\right)\)
Khi đó phương trình trở thành :
\(a^2+4x=\left(x+4\right)a\Leftrightarrow a^2-ax+4x-4a=0\)
\(\Leftrightarrow\left(a^2-ax\right)+\left(4x-4a\right)=0\Leftrightarrow a\left(a-x\right)+4\left(x-a\right)=0\)
\(\Leftrightarrow\left(a-x\right)\left(a-4\right)=0\Leftrightarrow\orbr{\begin{cases}a-x=0\\a-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=x\\a=4\end{cases}}}\)
+) \(a=x\Rightarrow\sqrt{x^2+7}=x\)( điều kiện bổ sung \(x\ge0\))
\(\Leftrightarrow x^2+7=x^2\Leftrightarrow7=0\)( vô lý ) => loại
+) \(a=4\)( thỏa mãn điều kiện a > 0 ) \(\Rightarrow\sqrt{x^2+7}=4\Leftrightarrow x^2+7=16\)
\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 3 ; -3 }
Tích cho mk nhoa !!!! ~~
P/S: Không cần đặt ẩn phụ cho phí t/g!
\(ĐK:x\inℝ\)
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
\(\Leftrightarrow x\sqrt{x^2+7}+4\sqrt{x^2+7}=x^2+4x+7\)
\(\Leftrightarrow\left(x^2+7-x\sqrt{x^2+7}\right)-\left(4\sqrt{x^2+7}-4x\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+7}-x\right)\left(\sqrt{x^2+7}-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2+7}=x\left(1\right)\\\sqrt{x^2+7}=4\left(2\right)\end{cases}}\)
Giải (1) ta thấy vô nghiệm
\(\left(2\right)\Leftrightarrow x^2+7=16\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
Vậy phương trình có tập nghiệm S = {3;-3}