Điều kiện: x - 5 ≥ 0 ⇔ x ≥ 5
⇔ x = 6 (thỏa mãn điều kiện xác định)
Vậy phương trình có nghiệm là: x = 6
Điều kiện: x - 5 ≥ 0 ⇔ x ≥ 5
⇔ x = 6 (thỏa mãn điều kiện xác định)
Vậy phương trình có nghiệm là: x = 6
Giải hệ bất phương trình
( x + 5 ) ( 6 - x ) > 0 2 x + 1 < 3
A. -5 < x < 1
B. x > -5
C. x < -5
D. x < 1
giải bất phương trình sau f(x)=(3x-4)(2x-3)/(x2-5x+6)(5-x)>0
giải phương trình :
4x3+12x2+9x= -\(-\left(\dfrac{x+3}{x+1}\right)^3+6\left(\dfrac{x+3}{x+1}\right)+5\)
Giải phương trình sau :
x^6+x^5-13x^4-14x^3+x+1
Giải các phương trình, bất phương trình sau:
1) \(\sqrt{3x+7}-5< 0\)
2) \(\sqrt{-2x-1}-3>0\)
3) \(\dfrac{\sqrt{3x-2}}{6}-3=0\)
4) \(-5\sqrt{-x-2}-1< 0\)
5) \(-\dfrac{2}{3}\sqrt{-3-x}-3>0\)
Giải phương trình sau:
\(4\sqrt{1-x}=x+6-3\sqrt{1-x^2}+5\sqrt{1+x}\)
Giải hệ phương trình \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y\right)=x+y-2xy\\x^2+11x+6=2\sqrt{9y-5}+\sqrt{x+y}\end{matrix}\right.\)
Giải các bất phương trình sau
a/ (x+1).(x-1).(3x-6)>0
b/ \(\dfrac{x+3}{x-2}\le0\)
c/ \(\dfrac{\left(2x-5\right).\left(x+2\right)}{-4x+3}\ge0\)
d/ \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
e/ \(\dfrac{2x^2+x}{1-2x}\ge1-x\)
f/ \(\dfrac{\left(2+x\right)^5.\left(x+1\right).\left(3-x\right)^{11}}{\left(2-x\right).\left(1-x\right)^{20}}\le0\)
Giải các bất phương trình sau
a/ (x+1).(x-1).(3x-6)>0
b/ \(\dfrac{x+3}{x-2}\le0\)
c/ \(\dfrac{\left(2x-5\right).\left(x+2\right)}{-4x+3}\ge0\)
d/ \(\dfrac{2x-5}{3x+2}< \dfrac{3x+2}{2x-5}\)
e/ \(\dfrac{2x^2+x}{1-2x}\ge1-x\)
f/ \(\dfrac{\left(2+x\right)^5.\left(x+1\right).\left(3-x\right)^{11}}{\left(2-x\right).\left(1-x\right)^{20}}\le0\)